If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48n^2+6n=0
a = 48; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·48·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*48}=\frac{-12}{96} =-1/8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*48}=\frac{0}{96} =0 $
| 6=2y(y+2) | | 1/2x(3x+3)=84 | | 1/2x(3x=+3)=84 | | 6a+12=2(3a-8 | | 80+(3x-22)=180 | | −3(2+4p)=2(2p−1) | | -3n-4-n=-12 | | v=1/3*3.14*64*9 | | 13+15+18+x/4=21 | | b^2+6b+7=-2 | | 4(x-5)=4x+5x | | 14n^2+34n-24=0 | | 8x-164=-15x+180 | | 3a=5a-60 | | x/4=x+5/6 | | 15+8(z-2)=7z+1 | | 3v+v=-12 | | (x+8)=2 | | -3/7y=-9 | | 48u=-3 | | 9x=32 | | -10x-3x+4=2 | | 2b+20=5b-10 | | X+6+x-1+x-7=7-3+x | | 20y-19=180 | | 0.10(y-9)+0.04y=0.16y-0.7 | | 5.3=v-2.7 | | 2m-5=3m+2 | | 143/5= | | 15h+18=11h-19 | | 12(z+12)=15^2 | | 1/2(x+12)=4x-1 |